直到波长为193纳米的节点的时候,已经可以用来生产280纳米到65纳米制程芯片了。
如果按照这个方向继续下去,本来应该去寻找波长157纳米的光源,开始生产45纳米及以下的芯片。
但是当时的光源开发公司,在研制波长157纳米的光源时遇到了困难,或者说是瓶颈。
当时的光刻机产业的领头羊尼康在157纳米光源上头铁了很久。
而台积电的林本坚发现了另外一个方向。
光进入水中时会发生折射,光源的波长也会有相应的缩短。
所以193纳米的光穿过一层水之后,就有了等效于134纳米波长光源的效果。
于是,台积电和阿斯麦尔合作,以林本坚提出的方向为目标,研发出了浸润式光刻机。
意思就是泡在水里面光刻。
继续使用193纳米的光源,推动芯片制程从45纳米继续上升,最终的极限做到了7纳米工艺。
直到深入5纳米制程范围的时候,193纳米的深紫外光源才彻底走到了尽头。
半导体产业不得不尝试更换波长13.5纳米的极紫外光源。
所以对于大明而言,当然可以尽快用攻关浸润式光刻技术,但是在新光源的研究上也要不断努力。
另外,前世所有用过的已经成功的路,当然是已经确定可行的路。
前世没有采用的道路,也未必是不可行的。
以现在大明的资源,对于后世出现过其他方案,也可以让工部有选择尝试。
说不定能够实现比原有道路更好的效果呢?
比如说“同步辐射光源”设施,本身作为一个其他方面的科研设施,其原理使得其能放出各种波长的光。
包括最为接近x光的“极紫外光”。
实际上,历史上早期的光刻机技术验证,也曾经用过同步辐射光源去做研究和验证。
但是同步辐射光
本网站为网友提供小说上传储存空间平台,为网友提供在线阅读交流、txt下载,平台上的所有文学作品均来源于网友的上传
用户上传的文学作品均由网站程序自动分割展现,无人工干预,本站自身不编辑或修改网友上传的内容(请上传有合法版权的作品)
如发现本站有侵犯权利人版权内容的,请向本站投诉,一经核实,本站将立即删除相关作品并对上传人ID账号作封号处理